Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Public Health ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20241078

ABSTRACT

BACKGROUND: Analyses of coronavirus disease 19 suggest specific risk factors make communities more or less vulnerable to pandemic-related deaths within countries. What is unclear is whether the characteristics affecting vulnerability of small communities within countries produce similar patterns of excess mortality across countries with different demographics and public health responses to the pandemic. Our aim is to quantify community-level variations in excess mortality within England, Italy and Sweden and identify how such spatial variability was driven by community-level characteristics. METHODS: We applied a two-stage Bayesian model to quantify inequalities in excess mortality in people aged 40 years and older at the community level in England, Italy and Sweden during the first year of the pandemic (March 2020-February 2021). We used community characteristics measuring deprivation, air pollution, living conditions, population density and movement of people as covariates to quantify their associations with excess mortality. RESULTS: We found just under half of communities in England (48.1%) and Italy (45.8%) had an excess mortality of over 300 per 100 000 males over the age of 40, while for Sweden that covered 23.1% of communities. We showed that deprivation is a strong predictor of excess mortality across the three countries, and communities with high levels of overcrowding were associated with higher excess mortality in England and Sweden. CONCLUSION: These results highlight some international similarities in factors affecting mortality that will help policy makers target public health measures to increase resilience to the mortality impacts of this and future pandemics.

2.
Environ Res ; 214(Pt 1): 113709, 2022 11.
Article in English | MEDLINE | ID: covidwho-1930856

ABSTRACT

Adverse health effects from extreme heat remain a major risk, especially in a changing climate. Several European countries have implemented heat health action plans (HHAPs) to prevent ill health and excess mortality from heat. This paper assesses the state of implementation of HHAPs in the WHO European Region and discusses barriers and successes since the early 2000s. The results are based on a web-based survey among 53 member states on the current national and federal HHAPs in place. Guided by the eight core elements of HHAPs as outlined by the WHO Regional Office for Europe guidance from 2008, we analyzed which elements were fully or partially implemented and which areas of improvement countries identified. HHAP adaptations to account for COVID-19 were sought via literature search and expert consultations. 27 member states provided information, of which 17 countries reported having a HHAP. Five out of eight core elements, namely agreement on a lead body, accurate and timely alert systems, heat-related health information plans, strategies to reduce health exposure, and care for vulnerable groups, were at least partially implemented in all 17 plans. Alert systems were implemented most often at 94%. The least often implemented items were real-time surveillance, long-term urban planning, and preparedness of health and social systems. Five countries had published COVID-19 guidance online. Our findings suggest a progressive improvement in the development and rollout of HHAPs overall and awareness of vulnerable population groups in WHO/Europe, while integration of HHAPs into long-term climate change and health planning remains a challenge.


Subject(s)
COVID-19 , Health Planning , Hot Temperature , Humans , Policy , United States , World Health Organization
3.
Int J Environ Res Public Health ; 19(13)2022 07 04.
Article in English | MEDLINE | ID: covidwho-1917482

ABSTRACT

Many workers are exposed to the effects of heat and often to extreme temperatures. Heat stress has been further aggravated during the COVID-19 pandemic by the use of personal protective equipment to prevent SARS-CoV-2 infection. However, workers' risk perception of heat stress is often low, with negative effects on their health and productivity. The study aims to identify workers' needs and gaps in knowledge, suggesting the adaptation of measures that best comply with the needs of both workers and employers. A cross-sectional online questionnaire survey was conducted in Italy in the hottest months of 2020 (June-October) through different multimedia channels. The data collected were analyzed using descriptive statistics; analytical tests and analysis of variance were used to evaluate differences between groups of workers. In total, 345 questionnaires were collected and analyzed. The whole sample of respondents declared that heat is an important contributor to productivity loss and 83% of workers did not receive heat warnings from their employer. In this context, the internet is considered as the main source of information about heat-related illness in the workplace. Results highlight the need to increase workers' perception of heat stress in the workplace to safeguard their health and productivity. About two-thirds of the sample stated that working in the sun without access to shaded areas, working indoors without adequate ventilation, and nearby fire, steam, and hot surfaces, represent the main injuries' risk factors.


Subject(s)
COVID-19 , Heat Stress Disorders , Occupational Exposure , Occupational Health , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel , Heat Stress Disorders/epidemiology , Heat Stress Disorders/prevention & control , Heat-Shock Response , Humans , Occupational Exposure/adverse effects , Pandemics , Perception , Pilot Projects , SARS-CoV-2
4.
Lancet Planet Health ; 6(5): e410-e421, 2022 05.
Article in English | MEDLINE | ID: covidwho-1889994

ABSTRACT

BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5°â€ˆ× 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5°â€ˆ× 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Subject(s)
Biodiversity , Global Health , Australia , Cities , Female , Humans , Pregnancy , Temperature
5.
Epidemiol Prev ; 44(5-6 Suppl 2): 236-243, 2020.
Article in Italian | MEDLINE | ID: covidwho-1068144

ABSTRACT

OBJECTIVES: to assess the temporal variation in excess total mortality and the portion of excess explained by COVID-19 deaths by geographical area, gender, and age during the COVID-19 epidemic. DESIGN: descriptive analysis of temporal variations of total excess deaths and COVID-19 deaths in the phase 1 and phase 2 of the epidemic in Italy. SETTING AND PARTICIPANTS: 12 Northern cities and 20 Central-Southern cities from December 2019 to June 2020: daily mortality from the National Surveillance System of Daily Mortality (SiSMG) and COVID-19 deaths from the integrated COVID-19 surveillance system. MAIN OUTCOME MEASURES: total mortality excess and COVID-19 deaths, defined as deaths in microbiologically confirmed cases of SARS-CoV-2, by gender and age groups. RESULTS: the largest excess mortality was observed in the North and during the first phase of the epidemic. The portion of excess mortality explained by COVID-19 decreases with age, decreasing to 51% among the very old (>=85 years). In phase 2 (until June 2020), the impact was more contained and totally attributable to COVID-19 deaths and this suggests an effectiveness of social distancing measures. CONCLUSIONS: mortality surveillance is a sensible information basis for the monitoring of health impact of the different phases of the epidemic and supporting decision making at the local and national level on containment measures to put in place in coming months.


Subject(s)
COVID-19/epidemiology , Mortality/trends , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , Cause of Death , Female , Humans , Italy/epidemiology , Male , Middle Aged , Population Surveillance , Quarantine , Time Factors , Urban Population/statistics & numerical data , Young Adult
6.
Int J Epidemiol ; 49(6): 1909-1917, 2021 01 23.
Article in English | MEDLINE | ID: covidwho-857629

ABSTRACT

BACKGROUND: Italy was the first country outside China to experience the impact of the COVID-19 pandemic, which resulted in a significant health burden. This study presents an analysis of the excess mortality across the 107 Italian provinces, stratified by sex, age group and period of the outbreak. METHODS: The analysis was performed using a two-stage interrupted time-series design using daily mortality data for the period January 2015-May 2020. In the first stage, we performed province-level quasi-Poisson regression models, with smooth functions to define a baseline risk while accounting for trends and weather conditions and to flexibly estimate the variation in excess risk during the outbreak. Estimates were pooled in the second stage using a mixed-effects multivariate meta-analysis. RESULTS: In the period 15 February-15 May 2020, we estimated an excess of 47 490 [95% empirical confidence intervals (eCIs): 43 984 to 50 362] deaths in Italy, corresponding to an increase of 29.5% (95% eCI: 26.8 to 31.9%) from the expected mortality. The analysis indicates a strong geographical pattern, with the majority of excess deaths occurring in northern regions, where few provinces experienced increases up to 800% during the peak in late March. There were differences by sex, age and area both in the overall impact and in its temporal distribution. CONCLUSION: This study offers a detailed picture of excess mortality during the first months of the COVID-19 pandemic in Italy. The strong geographical and temporal patterns can be related to the implementation of lockdown policies and multiple direct and indirect pathways in mortality risk.


Subject(s)
COVID-19/mortality , Disease Outbreaks , Mortality/trends , Pandemics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Communicable Disease Control , Female , Humans , Interrupted Time Series Analysis , Italy/epidemiology , Male , Middle Aged
8.
BMC Public Health ; 20(1): 1238, 2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-713857

ABSTRACT

BACKGROUND: Standardized mortality surveillance data, capable of detecting variations in total mortality at population level and not only among the infected, provide an unbiased insight into the impact of epidemics, like COVID-19 (Coronavirus disease). We analysed the temporal trend in total excess mortality and deaths among positive cases of SARS-CoV-2 by geographical area (north and centre-south), age and sex, taking into account the deficit in mortality in previous months. METHODS: Data from the Italian rapid mortality surveillance system was used to quantify excess deaths during the epidemic, to estimate the mortality deficit during the previous months and to compare total excess mortality with deaths among positive cases of SARS-CoV-2. Data were stratified by geographical area (north vs centre and south), age and sex. RESULTS: COVID-19 had a greater impact in northern Italian cities among subjects aged 75-84 and 85+ years. COVID-19 deaths accounted for half of total excess mortality in both areas, with differences by age: almost all excess deaths were from COVID-19 among adults, while among the elderly only one third of the excess was coded as COVID-19. When taking into account the mortality deficit in the pre-pandemic period, different trends were observed by area: all excess mortality during COVID-19 was explained by deficit mortality in the centre and south, while only a 16% overlap was estimated in northern cities, with quotas decreasing by age, from 67% in the 15-64 years old to 1% only among subjects 85+ years old. CONCLUSIONS: An underestimation of COVID-19 deaths is particularly evident among the elderly. When quantifying the burden in mortality related to COVID-19, it is important to consider seasonal dynamics in mortality. Surveillance data provides an impartial indicator for monitoring the following phases of the epidemic, and may help in the evaluation of mitigation measures adopted.


Subject(s)
Coronavirus Infections/mortality , Mortality/trends , Pneumonia, Viral/mortality , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Cities/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Spatio-Temporal Analysis , Young Adult
9.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: covidwho-639161

ABSTRACT

A remarkable excess mortality has coincided with the COVID-19 pandemic in Europe. We present preliminary pooled estimates of all-cause mortality for 24 European countries/federal states participating in the European monitoring of excess mortality for public health action (EuroMOMO) network, for the period March-April 2020. Excess mortality particularly affected ≥ 65 year olds (91% of all excess deaths), but also 45-64 (8%) and 15-44 year olds (1%). No excess mortality was observed in 0-14 year olds.


Subject(s)
Cause of Death/trends , Coronavirus Infections/mortality , Coronavirus/isolation & purification , Influenza, Human/mortality , Pneumonia, Viral/mortality , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Europe/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance , Preliminary Data , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL